Cold-source paradigm for steep-slope transistors based on van der Waals heterojunctions
نویسندگان
چکیده
منابع مشابه
Cold Anisotropically Interacting van der Waals Molecule: TiHe.
We have used laser ablation and helium buffer-gas cooling to produce titanium-helium van der Waals molecules at cryogenic temperatures. The molecules were detected through laser-induced fluorescence spectroscopy. Ground-state Ti(a^{3}F_{2})-He binding energies were determined for the ground and first rotationally excited states from studying equilibrium thermodynamic properties, and found to ag...
متن کاملTwo-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures
Two-dimensional (2D) semiconductors such as transition metal dichalcogenides (TMDCs) and black phosphorous have drawn tremendous attention as an emerging optical material due to their unique and remarkable optical properties. In addition, the ability to create the atomically-controlled van der Waals (vdW) heterostructures enables realizing novel optoelectronic devices that are distinct from con...
متن کاملThermionic Energy Conversion Based on Graphene van der Waals Heterostructures
Seeking for thermoelectric (TE) materials with high figure of merit (or ZT), which can directly converts low-grade wasted heat (400 to 500 K) into electricity, has been a big challenge. Inspired by the concept of multilayer thermionic devices, we propose and design a solid-state thermionic devices (as a power generator or a refrigerator) in using van der Waals (vdW) heterostructure sandwiched b...
متن کاملFlexible ferroelectric element based on van der Waals heteroepitaxy
We present a promising technology for nonvolatile flexible electronic devices: A direct fabrication of epitaxial lead zirconium titanate (PZT) on flexible mica substrate via van der Waals epitaxy. These single-crystalline flexible ferroelectric PZT films not only retain their performance, reliability, and thermal stability comparable to those on rigid counterparts in tests of nonvolatile memory...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Research
سال: 2020
ISSN: 2643-1564
DOI: 10.1103/physrevresearch.2.043286